Advertisements
Advertisements
Question
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Solution
In the given problem, we have to find the value of `8x^3 + 27y^3`
Given`2x + 3y = 13, xy = 6`
In order to find `8x^3 + 27y^3`we are using identity `(a+b )^3 = a^3 + b^3 + 3ab(a+b)`
`(2x + 3y )^3 = (13)^3`
`8x^3 + 27 y^3 + 3 (2x)(3y)(2x+ 3y)= 2197`
` 8x^3 + 27y^3 + 18xy (2x+ 3y) = 2197`
Here putting, `2x + 3y = 13, xy = 6`
`8x^3 + 27y^3 + 18 xx 6 xx 13 = 2197`
` 8x^3 + 27y^3 + 1404 = 2197`
` 8x^3 + 27y^3 = 2197 - 1404`
`8x^3+ 27y^3 = 793`
Hence the value of `8x^3 + 27y^3` is 793.
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
4y2 – 4y + 1
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Evaluate the following using suitable identity:
(99)3
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
Evaluate the following using identities:
`(2x+ 1/x)^2`
Evaluate the following using identities:
117 x 83
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Write in the expand form: `(2x - y + z)^2`
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
If a2 + b2 + c2 − ab − bc − ca =0, then
Use identities to evaluate : (101)2
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).