English

Simplify the following products: (x2-25)(25-x2)-x2+2x - Mathematics

Advertisements
Advertisements

Question

Simplify the following products:

`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`

Sum

Solution

`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`

On rearranging we get,

⇒ `(x/2 - 2/5)[-(x/2 - 2/5)] - x^2 + 2x`

⇒ `- (x/2 - 2/5)^2 - x^2 + 2x`

We shall use the identity (x − y)2 = x2 − 2xy + y2

By substituting `x = x/2, y = 2/5`

⇒ `- [(x/2)^2 - 2(x/2)(2/5) + (2/5)^2] - x^2 + 2x`

⇒ `- [x^2/4 - (2x)/5 + 4/25] - x^2 + 2x`

⇒ `- [x^2/4 - (2x)/5 + 4/25] - x^2 + 2x`

⇒ `- x^2/4 + (2x)/5 - 4/25 - x^2 + 2x`

⇒ `- x^2/4 - x^2 - 4/25 + (2x)/5 + 2x`

⇒ `[- x^2/4 - x^2] - 4/25 + [(2x)/5 + 2x]`

⇒ `[- x^2/4 - x^2] - 4/25 + [(2x)/5 + 2x]`

⇒ `[- x^2/4 - (4x^2)/4] - 4/25 + [(2x)/5 + (10x)/5]`

⇒ `[(- x^2 - 4x^2)/4] - 4/25 + [(2x + 10x)/5]`

⇒ `(- 5x^2)/4 - 4/25 + (12x)/5`

Hence, the value of `(- 5x^2)/4 - 4/25 + (12x)/5`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Algebraic Identities - Exercise 4.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 4 Algebraic Identities
Exercise 4.1 | Q 13.1 | Page 7

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×