English

If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25. - Mathematics

Advertisements
Advertisements

Question

If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.

Sum

Solution

Given: a + b + c = 5 and ab + bc + ca = 10

We know that: a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)

= (a + b + c)[a2 + b2 + c2 – (ab + bc + ca)] 

= 5{a2 + b2 + c2 – (ab + bc + ca)}

= 5(a2 + b2 + c2 – 10)

Given: a + b + c = 5

Now, squaring both sides, get: (a + b + c)2 = 52

a2 + b2 + c2 + 2(ab + bc + ca) = 25

a2 + b2 + c2 + 2 × 10 = 25

a2 + b2 + c2 = 25 – 20

= 5

Now, a3 + b3 + c3 – 3abc = 5(a2 + b2 + c2 – 10)

= 5 × (5 – 10)

= 5 × (–5)

= –25

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Polynomials - Exercise 2.4 [Page 23]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 2 Polynomials
Exercise 2.4 | Q 8. | Page 23

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×