English

If a, b, c are all non-zero and a + b + c = 0, prove that a2bc+b2ca+c2ab=3. - Mathematics

Advertisements
Advertisements

Question

If a, b, c are all non-zero and a + b + c = 0, prove that `a^2/(bc) + b^2/(ca) + c^2/(ab) = 3`.

Sum

Solution

To prove, `a^2/(bc) + b^2/(ca) + c^2/(ab) = 3`

We know that, a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)

= 0(a2 + b2 + c2 – ab – bc – ca)  ...[∵ a + b + c = 0, given]

= 0

⇒ a3 + b3 + c3 = 3abc

On dividing both sides by abc, we get

`a^3/(abc) + b^3/(abc) + c^3/(abc) = 3`

⇒ `a^2/(bc) + b^2/(ac) + c^2/(ab) = 3`

Hence proved. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Polynomials - Exercise 2.4 [Page 23]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 2 Polynomials
Exercise 2.4 | Q 7. | Page 23

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×