Advertisements
Advertisements
Question
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Solution
x3 − y3 = (x − y)(x2 + xy + y2)
L.H.S. = x3 − y3
Consider the right-hand side (RHS) and expand it as follows:
R.H.S. = (x − y)(x2 + xy + y2)
R.H.S. = x(x2 + xy + y2) − y(x2 + xy + y2)
R.H.S. = x3 + x2y + xy2 − yx2 − xy2 − y3
R.H.S. = (x3 − y3) + (x2y + xy2 + x2y − xy2)
R.H.S. = x3 − y3
∴ R.H.S. = L.H.S.
Hence, verified.
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(x + 2y + 4z)2
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Evaluate of the following:
`(10.4)^3`
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate: (6 − 5xy) (6 + 5xy)
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If x + y = 1 and xy = -12; find:
x - y
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`