Advertisements
Advertisements
Question
If x + y = 1 and xy = -12; find:
x - y
Solution
(x + y)2 = (1)2
⇒ x2 + y2 + 2xy
= 1
⇒ x2 + y2
= 1 - 2(-12)
= 1 + 24
= 25
Now, (x - y)2
= x2 + y2 - 2xy
= 25 - 2(-12)
= 25 + 24
= 49
⇒ x - y
= ±7.
APPEARS IN
RELATED QUESTIONS
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If a + b = 6 and ab = 20, find the value of a3 − b3
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Evaluate: (9 − y) (7 + y)
Evaluate: 20.8 × 19.2
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`