Advertisements
Advertisements
Question
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Solution
We know that,
`(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)`
`=> (9)^2 = a^2 + b^2 + c^2 + 2(23)`
`=> 81 = a^2 + b^2 + c^2 + 46` [∵ a + b + c = 9 and (ab + bc + ca = 23)]
`=> a^2 + b^2 + c^2 = 81 - 46`
`=> a^2 + b^2 + c^2 = 35`
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(2x – y + z)2
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Write in the expanded form: (-2x + 3y + 2z)2
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Evaluate: 20.8 × 19.2
Expand the following:
(2p - 3q)2
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
Simplify:
(7a +5b)2 - (7a - 5b)2
Expand the following:
(4a – b + 2c)2
Expand the following:
(–x + 2y – 3z)2
Expand the following:
`(1/x + y/3)^3`