English

If a - B = 4 and a + B = 6; Find (I) A2 + B2 (Ii) Ab - Mathematics

Advertisements
Advertisements

Question

If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab

Sum

Solution

(i) We know that,
( a - b )2 = a2 - 2ab + b2 
Rewrite the above identity as,
a2  + b= ( a - b )2 + 2ab           ....(1)
Similarly, we know that,
( a + b )2 = a2 + 2ab + b2
Rewrite the above identity as,
 a2  + b2 = ( a + b )2 - 2ab                                     .....(2)
Adding the equations (1) and (2), we have
2( a2 + b2 ) = ( a - b )2 + 2ab + ( a + b )2 - 2ab
⇒ 2( a2 + b2 ) = ( a - b )2  + ( a + b )2
⇒ ( a2 + b2 ) = `1/2[( a - b )^2  + ( a + b )^2]`          ....(3)

Given that a + b = 6 ; a - b = 4
Substitute the values of ( a + b ) and (a - b)
in equation (3), we have
a2 + b2 = `1/2[ (4)^2 + (6)^2]`

= `1/2[ 16 + 36 ]`

= `52/2`
⇒ ( a2 + b2 ) = 26                                            .....(4)

From equation (4), we have
a2 + b2 = 26
Consider the identity,
( a - b )2 = a2 + b2 - 2ab                                ....(5)
Substitute the value a - b = 4 and a2 + b2 = 26
in the above equation, we have
(4)2 = 26 - 2ab
⇒ 2ab = 26 - 16
⇒  2ab = 10
⇒  ab = 5

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Expansions (Including Substitution) - Exercise 4 (A) [Page 58]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 4 Expansions (Including Substitution)
Exercise 4 (A) | Q 9 | Page 58
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×