Advertisements
Advertisements
Question
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
Options
25
35
49
30
Solution
We have to find the value of `(9x^2 - 4/x^2)`
Given `3x +2/x = 7`
Using identity `(a+b)^2 = a^2 +b^2 +2ab` we get,
Here ` a = 3x ,b= 2/x`
`(3x +2/x )^2 = (3x)^2 + 2 xx 3x xx 2/x + (2/x)^2`
Substituting `3x + 2/x = 7` we get,
`(7)^2 = 9x^2 + 2 xx 3 xx x xx 2/x +(2/x)^2``
`49 = 9x^2 + 12 +4/x^2`
By transposing + 12 left hand side we get,
`49 - 12 = 9x^2 +4/x^2`
`37 = 9x^2 + 4/ x^2`
Again using identity `(a-b)^2 = a^2 - 2ab +b^2` we get,
`(3x - 2/x)^2 = (3x )^2 - 2 xx 3x xx 2/x + (2/x)^2`
`(3x- 2/x)^2=(9x)^2 + 4/x^2 - 12`
Substituting `(9x)^2 + 4/x^2 = 37` we get
`(3x - 2/x)^2 = 37 - 12`
`(3x - 2/x)^2 = 25`
`(3x - 2/x)(3x - 2/x) = 5 xx 5`
`3x - 2/x = 5`
Using identity (x + y)( x - y )we get
Here ` x= 3x,y = 2/x`
`(3x)^2 - (2/x)^2 = (3x + 2/x)(3x - 2/x)`
Substituting `3x +2/x = 7,3x - 2/x = 5` we get,
`9x^2 - 4/x^2 = 7 xx 5 `
`9x^2 - 4/x^2 = 35`
The value of `9x^2 - 4/x^2`is 35.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(x + 8) (x – 10)
Write the following cube in expanded form:
`[3/2x+1]^3`
Evaluate following using identities:
991 ☓ 1009
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Evaluate the following:
(98)3
Evaluate of the following:
`(10.4)^3`
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
Evaluate:
253 − 753 + 503
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate the following without multiplying:
(95)2
The value of 2492 – 2482 is ______.
The coefficient of x in the expansion of (x + 3)3 is ______.
Expand the following:
`(1/x + y/3)^3`
Simplify (2x – 5y)3 – (2x + 5y)3.