Advertisements
Advertisements
Question
Simplify (2x – 5y)3 – (2x + 5y)3.
Solution
(2x – 5y)3 – (2x + 5y)3 = [(2x)3 – (5y)3 – 3(2x)(5y)(2x – 5y)] – [(2x)3 + (5y)3 + 3(2x)(5y)(2x + 5y)] ...[Using identity, (a – b)3 = a3 – b3 – 3ab and (a + b)3 = a3 + b3 + 3ab]
= (2x)3 – (5y)3 – 30xy(2x – 5y) – (2x)3 – (5y)3 – 30xy(2x + 5y)
= –2(5y)3 – 30xy(2x – 5y + 2x + 5y)
= –2 × 125y3 – 30xy(4x)
= –250y3 – 120x2y
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
95 × 96
Factorise the following using appropriate identity:
4y2 – 4y + 1
Expand the following, using suitable identity:
(2x – y + z)2
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
Evaluate:
253 − 753 + 503
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
Find the square of : 3a - 4b
Expand the following:
(3x + 4) (2x - 1)
Expand the following:
(2p - 3q)2
If x + y = 1 and xy = -12; find:
x - y
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.