Advertisements
Advertisements
Question
Find the square of : 3a - 4b
Solution
We know that
( a - b )2 = a2 + b2 - 2ab
( 3a - 4b )2 = 9a2 + 16b2 - 2 x 3a x 4b
= 9a2 + 16b2 - 24ab
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
95 × 96
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Find the squares of the following:
3p - 4q2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3