Advertisements
Advertisements
Question
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
Solution
Give `(4- 1/(3x))^3`
We shall use the identity `a^3- b^3 = a^3-b^3 - 3ab(a-b)`
Here `a=4,b=1/(3x)`
By applying in identity we get
`(4- 1/(3x))^3 = (4)^3 - (1/(3x))^3 - 3(4) (1/(3x)) (4-1/(3x))`
`= 4 xx 4xx 4 - (1 xx 1xx1)/(3x xx 3x xx 3x) - 12/(3x) (4-1/(3x))`
` = 64 - 1/(27x^3) - 4/x (4- 1/(3x))`
` = 64 - 1/(27x^3) - (4/x xx 4)-(4/x xx 1/(3x))`
` = 64 - 1/27x^3 - (16/x - 4/(3x^2))`
` = 64 - 1/27x^3 - 16/x + 4/(3x^2)`
Hence cube of the binomial expression of `(4- 1/(3x))^3` is `64 - 1/(27x^3) - 16/x + 4/(3x^2).`
APPEARS IN
RELATED QUESTIONS
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Evaluate following using identities:
991 ☓ 1009
Write in the expanded form: (ab + bc + ca)2
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Find the following product:
Evaluate:
253 − 753 + 503
Use identities to evaluate : (502)2
Use the direct method to evaluate :
(xy+4) (xy−4)
Simplify by using formula :
(x + y - 3) (x + y + 3)
If x + y = 9, xy = 20
find: x2 - y2.
If p + q = 8 and p - q = 4, find:
p2 + q2
If m - n = 0.9 and mn = 0.36, find:
m + n
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Simplify:
(3a - 7b + 3)(3a - 7b + 5)