English

Find the Cube of the Following Binomials Expression : 4 − 1 3 X - Mathematics

Advertisements
Advertisements

Question

Find the cube of the following binomials expression :

\[4 - \frac{1}{3x}\]

Answer in Brief

Solution

 Give  `(4- 1/(3x))^3`

We shall use the identity `a^3- b^3 = a^3-b^3 - 3ab(a-b)`

Here `a=4,b=1/(3x)`

By applying in identity we get

`(4- 1/(3x))^3 = (4)^3 - (1/(3x))^3 - 3(4) (1/(3x)) (4-1/(3x))`

`= 4 xx 4xx 4 - (1 xx 1xx1)/(3x xx 3x xx 3x) - 12/(3x) (4-1/(3x))`

` = 64 - 1/(27x^3) - 4/x (4- 1/(3x))`

` = 64 - 1/(27x^3) - (4/x xx 4)-(4/x xx 1/(3x))`

` = 64 - 1/27x^3 - (16/x - 4/(3x^2))`

` = 64 - 1/27x^3 - 16/x + 4/(3x^2)`

Hence cube of the binomial expression of  `(4- 1/(3x))^3` is `64 - 1/(27x^3) - 16/x + 4/(3x^2).`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Algebraic Identities - Exercise 4.3 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 4 Algebraic Identities
Exercise 4.3 | Q 1.4 | Page 19

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×