Advertisements
Advertisements
प्रश्न
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
उत्तर
Give `(4- 1/(3x))^3`
We shall use the identity `a^3- b^3 = a^3-b^3 - 3ab(a-b)`
Here `a=4,b=1/(3x)`
By applying in identity we get
`(4- 1/(3x))^3 = (4)^3 - (1/(3x))^3 - 3(4) (1/(3x)) (4-1/(3x))`
`= 4 xx 4xx 4 - (1 xx 1xx1)/(3x xx 3x xx 3x) - 12/(3x) (4-1/(3x))`
` = 64 - 1/(27x^3) - 4/x (4- 1/(3x))`
` = 64 - 1/(27x^3) - (4/x xx 4)-(4/x xx 1/(3x))`
` = 64 - 1/27x^3 - (16/x - 4/(3x^2))`
` = 64 - 1/27x^3 - 16/x + 4/(3x^2)`
Hence cube of the binomial expression of `(4- 1/(3x))^3` is `64 - 1/(27x^3) - 16/x + 4/(3x^2).`
APPEARS IN
संबंधित प्रश्न
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Write in the expanded form:
`(m + 2n - 5p)^2`
Simplify `(a + b + c)^2 + (a - b + c)^2`
If a − b = 4 and ab = 21, find the value of a3 −b3
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Evaluate of the following:
`(10.4)^3`
Find the following product:
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
If a2 + b2 + c2 − ab − bc − ca =0, then
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Evaluate: (2 − z) (15 − z)
Evaluate the following without multiplying:
(95)2
If p + q = 8 and p - q = 4, find:
pq
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.