Advertisements
Advertisements
प्रश्न
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
उत्तर
In the given problem, we have to find cube of the binomial expressions
Given `(2x + 3/x)^3`
We shall use the identity `(a+b)^3 = a^3+b^3 +3ab(a+b).`
Here `a = 2x,b = 3/x,`
By applying identity we get
`(2x + 3/x)^3 = (2x)^3 +(3/x)^3 + 3 (2x) (3/x) (2x+3/x)`
`= 2x xx 2x xx2x|+3/x xx3/x xx 3/x+18x/x (2x+3/x)`
`= 8x^3 +27/x^3 + (18x)/x (2x + 3/x)`
` = 8x^3 +27/x^3 + (18xx 2x) +(18 xx 3/x)`
`8^3+27/x^3 + 36x +54/x`
Hence cube of the binomial expression of `(2x + 3/x) 8^3+27/x^3 + 36x +54/x`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Write in the expanded form:
(2a - 3b - c)2
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If a + b = 7 and ab = 10; find a - b.
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Use the direct method to evaluate :
(4+5x) (4−5x)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`