Advertisements
Advertisements
प्रश्न
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
उत्तर
`"a"^2 - 1/"a"^2`
= `("a" + 1/"a") ("a" - 1/"a")`
= `(±2sqrt(26)) (10)`
= ±20`sqrt(26)`.
APPEARS IN
संबंधित प्रश्न
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If a − b = −8 and ab = −12, then a3 − b3 =
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`