Advertisements
Advertisements
प्रश्न
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
उत्तर
In the given problem, we have to find the value of equation using identity
Given \[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
We shall use the identity `(a-b)(a^2 + ab + b^2) = a^3 - b^3`
We can rearrange the \[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]as
`= (3/x - x/3) ((3/x)^2 + (x/3)^2 + (3/x)(x/3))`
` = (3/x)^3 - (x/3)^3`
\[= \left( \frac{3}{x} \right) \times \left( \frac{3}{x} \right) \times \left( \frac{3}{x} \right) - \left( \frac{x}{3} \right) \times \left( \frac{x}{3} \right) \times \left( \frac{x}{3} \right)\]
\[ = \frac{27}{x^3} - \frac{x^3}{27}\]
Now substituting the value x=3, in `27/x^3 - x^3/27`we get,
`27/3^3 - 3^3/27`
`27/27 - 27/27`
` = 0`
Hence the Product value of \[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\] is `0`.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(3a – 7b – c)2
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Write the following cube in expanded form:
`[x-2/3y]^3`
Write in the expanded form:
(2a - 3b - c)2
Write in the expanded form: `(x + 2y + 4z)^2`
If a − b = 4 and ab = 21, find the value of a3 −b3
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Evaluate of the following:
463+343
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Use the direct method to evaluate :
(3b−1) (3b+1)
Evaluate the following without multiplying:
(103)2
Evaluate the following without multiplying:
(999)2
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).