Advertisements
Advertisements
प्रश्न
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
उत्तर
We have to find the value of `a - 1/a`
Given `a^2+1/a^2 = 102`
Using identity `(x-y)^2 = x^2 +y^2 - 2xy`
Here `x=a,y = 1/a`
`(a-1/a )^2 = a^2 + (1/a)^2 - 2xx a xx 1/a`
`(a-1/a )^2 = a^2 + 1/a^2 - 2xx a xx 1/a`
By substituting `a^2 + 1/a^2 = 102` we get
`(a-1/a)^2 = 102 -2`
`(a-1/a)^2 = 100`
`(a-1/a )(a-1/a) = 10 xx 10`
`(a-1/a) = 10`
Hence the value of `a-1/a` is 10.
APPEARS IN
संबंधित प्रश्न
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Find the following product:
If x = −2 and y = 1, by using an identity find the value of the following
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
Use identities to evaluate : (998)2
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate the following without multiplying:
(999)2
If x + y = 9, xy = 20
find: x2 - y2.
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Which one of the following is a polynomial?
Expand the following:
`(1/x + y/3)^3`