Advertisements
Advertisements
प्रश्न
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
बेरीज
उत्तर
`x^2 + (1)/x^2 = 18`
Using `(x - 1/x)^2`
= `x^2 + (1)/x^2 - 2`
⇒ `(x - 1/x)^2`
= 18 - 2
= 16
⇒ `x - (1)/x`
= 4.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Simplify by using formula :
(5x - 9) (5x + 9)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`