Advertisements
Advertisements
प्रश्न
If `9"a"^2 + (1)/(9"a"^2) = 23`; find the value of `27"a"^3 + (1)/(27"a"^3)`
उत्तर
`9"a"^2 + (1)/(9"a"^2) = 23`
Using `(3"a" + 1/(3"a"))^2`
= `(3"a")^2 + (1/(3"a"))^2 + 2(3"a") (1/(3"a"))`
⇒ `(3"a" + 1/(3"a"))^2`
= `9"a"^2 + 1/(9"a"^2) + 2`
= 23 + 2
= 25
⇒ `3"a" + 1/(3"a")` = 5
Cubing both sides, we get :
`(3"a")^3 + (1/(3"a"))^3 + 3(3"a") (1/(3"a")) (3"a" + 1/(3"a"))` = (5)3
⇒ `27"a"^3 + 1/(27"a"^3) + 3(5)` = 125
⇒ `27"a"^3 + 1/(27"a"^3)`
= 125 - 15
= 110.
APPEARS IN
संबंधित प्रश्न
Find the cube of : 5a + 3b
Use property to evaluate : 93 - 53 - 43
If 4x2 + y2 = a and xy = b, find the value of 2x + y.
The sum of two numbers is 9 and their product is 20. Find the sum of their (i) Squares (ii) Cubes
Expand : (3x - 5y - 2z) (3x - 5y + 2z)
If 2x - 3y = 10 and xy = 16; find the value of 8x3 - 27y3.
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
If a + 2b + c = 0; then show that a3 + 8b3 + c3 = 6abc
Expand: (41)3
Expand: `[x + 1/y]^3`