Advertisements
Advertisements
Question
If `9"a"^2 + (1)/(9"a"^2) = 23`; find the value of `27"a"^3 + (1)/(27"a"^3)`
Solution
`9"a"^2 + (1)/(9"a"^2) = 23`
Using `(3"a" + 1/(3"a"))^2`
= `(3"a")^2 + (1/(3"a"))^2 + 2(3"a") (1/(3"a"))`
⇒ `(3"a" + 1/(3"a"))^2`
= `9"a"^2 + 1/(9"a"^2) + 2`
= 23 + 2
= 25
⇒ `3"a" + 1/(3"a")` = 5
Cubing both sides, we get :
`(3"a")^3 + (1/(3"a"))^3 + 3(3"a") (1/(3"a")) (3"a" + 1/(3"a"))` = (5)3
⇒ `27"a"^3 + 1/(27"a"^3) + 3(5)` = 125
⇒ `27"a"^3 + 1/(27"a"^3)`
= 125 - 15
= 110.
APPEARS IN
RELATED QUESTIONS
Expand.
(k + 4)3
Expand.
(52)3
If `"a" - (1)/"a" = 7`, find `"a"^2 + (1)/"a"^2 , "a"^2 - (1)/"a"^2` and `"a"^3 - (1)/"a"^3`
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
If `x^2 + (1)/x^2 = 18`; find : `x^3 - (1)/x^3`
If a + b = 5 and ab = 2, find a3 + b3.
If p - q = -1 and pq = -12, find p3 - q3
Simplify:
(a + b)3 + (a - b)3
Expand: (3x + 4y)3.
Find the volume of the cube whose side is (x + 1) cm