Advertisements
Advertisements
Question
If `x^2 + (1)/x^2 = 18`; find : `x^3 - (1)/x^3`
Sum
Solution
`(x^3 - (1)/x)^3`
= `x^3 - (1)/x^3 - 3(x - 1/x)`
⇒ 64 = `x^3 - (1)/x^3 - 3(4)`
⇒ `x^3 - (1)/x^3`
= 64 + 12
= 76.
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Expand.
`((5x)/y + y/(5x))^3`
Simplify.
(3r − 2k)3 + (3r + 2k)3
If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.
Find the cube of: `4"p" - (1)/"p"`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
Expand (3 + m)3
Expand (52)3
(p + q)(p2 – pq + q2) is equal to _____________