Advertisements
Advertisements
Question
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
Sum
Solution
`x^2 + (1)/x^2 = 18`
Using `(x - 1/x)^2`
= `x^2 + (1)/x^2 - 2`
⇒ `(x - 1/x)^2`
= 18 - 2
= 16
⇒ `x - (1)/x`
= 4.
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Evaluate following using identities:
991 ☓ 1009
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Evaluate of the following:
1113 − 893
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
The product (x2−1) (x4 + x2 + 1) is equal to
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Find the squares of the following:
9m - 2n
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`