Advertisements
Advertisements
Question
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Solution
We know that,
( a + b )2 = a2 + 2ab + b2
Given that `a - 1/a` = 8 ; Substitute in equation (1), we have
`(8)^2 = a^2 + 1/a^2 - 2`
⇒ `a^2 + 1/a^2 = 64 + 2`
⇒ `a^2 + 1/a^2 = 66`
⇒ `(a + 1/a)^2 = a^2 + 1/a^2 + 2`
⇒ `(a + 1/a)^2 = 66 + 2`
⇒ `(a + 1/a)^2 = 68`
i) `a + 1/a = sqrt68 `
⇒ `sqrt(17xx4 )= _-^+2sqrt17`
ii) `a^2 - 1/a^2 = (a+1/a) (a - 1/a)`
⇒ `a^2 - 1/a^2 = _-^+2sqrt17 xx 8`
⇒ `a^2 - 1/a^2 = _-^+16sqrt17`
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
4y2 – 4y + 1
Evaluate the following using suitable identity:
(99)3
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate: (4 − ab) (8 + ab)
Expand the following:
(3x + 4) (2x - 1)
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Using suitable identity, evaluate the following:
9992