Advertisements
Advertisements
Question
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Solution
We know that,
( a + b )2 = a2 + 2ab + b2
and
( a - b )2 = a2 - 2ab + b2
Thus,
`( a + 1/a )^2 = a^2 + 1/a^2 + 2 xx a xx 1/a`
= `a^2 + 1/a^2 + 2` .....(1)
Given that `a + 1/a` = 6; Substitute in equation (1), we have
`(6)^2 = a^2 + 1/a^2 + 2`
⇒ `a^2 + 1/a^2 = 36 - 2`
⇒ `a^2 + 1/a^2 = 34` ....(2)
Similarly, consider
`( a - 1/a )^2 = a^2 + 1/a^2 - 2 xx a xx 1/a`
= `a^2 + 1/a^2 - 2`
= 34 - 2 [ from (2) ]
⇒ `( a - 1/a )^2` = 32
⇒ `( a - 1/a ) = +- sqrt32`
⇒ `( a - 1/a ) = +- 4sqrt2` ....(3)
(ii) We need to find `a^2 - 1/a^2`
We know that, `a^2 - 1/a^2 = ( a - 1/a )( a + 1/a )`
`a - 1/a = +- 4sqrt2 ; a + 1/a = 6`
Thus,
`a^2 - 1/a^2 = (+- 4sqrt2 )(6)`
⇒ `a^2 - 1/a^2 = (+- 24sqrt2 )`
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(x + 2y + 4z)2
Write the following cube in expanded form:
(2x + 1)3
Simplify (2x + p - c)2 - (2x - p + c)2
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
Simplify:
(7a +5b)2 - (7a - 5b)2