Advertisements
Advertisements
Question
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
Solution
In the given problem, we have to find the value of equation using identity
Given \[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
We shall use the identity `(a-b) (a^3 + ab + b^2) = a^3 - b^3`
We can rearrange the `(x/4 - y/3) (x^2/16 + (xy)/12 + y^2/9)`as
` =(x/4 - y/3) ((x/4)^2 + (y/3)^2 + (x/4)(y/3))`
` = (x/4)^3 - (y/3)^3`
\[= \left( \frac{x}{4} \right) \times \left( \frac{x}{4} \right) \times \left( \frac{x}{4} \right) - \left( \frac{y}{3} \right) \times \left( \frac{y}{3} \right) \times \left( \frac{y}{3} \right)\]
\[ = \frac{x^3}{64} - \frac{y^3}{27}\]
Now substituting the value x=3, in `x^3/64 - y^3/27`we get,
`= x^3/64 - y^3/27`
`= (3)^3/64 - (-1)^3/27`
` = 27/64 + 1/27`
Taking Least common multiple, we get
` =(27 xx 27)/(64 xx 27) + (1 xx 64)/(27 xx 64)`
`=729/1728 + 64 /1728`
` =(729 + 64)/1728`
` = 793/1728`
Hence the Product value of `(x/4 - y/3)(x^2/16 + (xy)/12 + y^2/9)`is ` = 793/1728`.
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Write in the expanded form:
`(a + 2b + c)^2`
Simplify `(a + b + c)^2 + (a - b + c)^2`
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
Find the square of `(3a)/(2b) - (2b)/(3a)`.
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Expand the following:
(x - 5) (x - 4)
Simplify by using formula :
(2x + 3y) (2x - 3y)
Simplify by using formula :
(x + y - 3) (x + y + 3)
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
Find the following product:
(x2 – 1)(x4 + x2 + 1)