Advertisements
Advertisements
Question
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
Sum
Solution
(x + y + z)2 = (12)2
⇒ x2 + y2 + z2 + 2xy + 2yz + 2zx = 144
⇒ x2 + y2 + z2 + 2(xy + yz + zx) = 144
⇒ x2 + y2 + z2 + 2(27) = 144
⇒ x2 + y2 + z2
= 144 - 54
= 90.
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Write the following cube in expanded form:
`[3/2x+1]^3`
Write in the expanded form: (ab + bc + ca)2
If a + b = 10 and ab = 21, find the value of a3 + b3
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If a - b = 7 and ab = 18; find a + b.
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`