Advertisements
Advertisements
Question
Write the following cube in expanded form:
`[3/2x+1]^3`
Solution
(x + y)3 = x3 + y3 + 3xy(x + y)
Using Identity
`[3/2x + 1]^3 = (3/2x)^3 + (1)^3 + 3(3/2x)(1)(3/2x + 1)`
= `27/8x^3 + 1 + 9/2x[3/2x + 1]`
= `27/8x^3 + 1 + 27/4x^2 + 9/2x`
= `27/8x^3 + 27/4x^2 + 9/2x + 1`
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Factorise the following:
27 – 125a3 – 135a + 225a2
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Evaluate the following using identities:
`(2x+ 1/x)^2`
Evaluate following using identities:
991 ☓ 1009
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
If a + b = 8 and ab = 6, find the value of a3 + b3
If x = −2 and y = 1, by using an identity find the value of the following
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
Use identities to evaluate : (97)2
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Find the squares of the following:
3p - 4q2
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If a - b = 10 and ab = 11; find a + b.
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
Simplify:
(x + y - z)2 + (x - y + z)2
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3