Advertisements
Advertisements
Question
If x = −2 and y = 1, by using an identity find the value of the following
Solution
In the given problem, we have to find the value of \[\left( \frac{2}{x} - \frac{x}{2} \right) \left( \frac{4}{x^2} + \frac{x^2}{4} + 1 \right)\] using identity
Given x = -2
We shall use the identity `(a+b)(a^2 + ab + b^2) = (a^3 - b^3)`
We can rearrange the \[\left( \frac{2}{x} - \frac{x}{2} \right) \left( \frac{4}{x^2} + \frac{x^2}{4} + 1 \right)\]as
`(2/x - x/2)(4/x^2 + x^2/4 + 1) = (2/x - x/2)((2/x)^2 +2/x xx x/2+ (x/2)^2)`
` = (2/x)^3 - (x/2)^3`
\[= \left( \frac{2}{x} \right) \times \left( \frac{2}{x} \right) \times \left( \frac{2}{x} \right) - \left( \frac{x}{2} \right) \times \left( \frac{x}{2} \right) \times \left( \frac{x}{2} \right)\]
\[ = \frac{8}{x^3} - \frac{x^3}{8}\]
Now substituting the value x = -2 in `8/x^2 - x^3/8`we get,
` = 8/(-2)^3 - ( -2)^3/8`
` = 8/-8 - -8/8`
` = -1 - (-1)`
` = -1+1`
` = 0`
Hence the Product value of \[\left( \frac{2}{x} - \frac{x}{2} \right) \left( \frac{4}{x^2} + \frac{x^2}{4} + 1 \right)\] is = 0.
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Write the expanded form:
`(-3x + y + z)^2`
Write in the expanded form: (ab + bc + ca)2
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
If a − b = 5 and ab = 12, find the value of a2 + b2
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
Evalute : `( 7/8x + 4/5y)^2`
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Expand the following:
(a + 4) (a + 7)
Expand the following:
(x - 5) (x - 4)
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.