Advertisements
Advertisements
Question
If x = −2 and y = 1, by using an identity find the value of the following
Solution
n the given problem, we have to find the value of (4y2 − 9x2) (16y4 + 36x2y2+81x4) using identity
Given x=-2 y = 1
We shall use the identity `(a-b)(a^2 + ab+b^2) = a^3 - b^3`
We can rearrange the 4y2 − 9x2 (16y4 + 36x2y2+81x4) as
`(4y^2 - 9x^2 ) (16y^4 + 36x^2 + 81x^4) = (4y^2 - 9x^2)((4y^2)^2 + 4y^2 xx 9x^2 + (9x^2)^2)`
`= (4y^2)^3 - (9x^2)^3`
\[= \left( 4 y^2 \right) \times \left( 4 y^2 \right) \times \left( 4 y^2 \right) - \left( 9 x^2 \right) \times \left( 9 x^2 \right) \times \left( 9 x^2 \right)\]
\[ = 64 y^6 - 729 x^6\]
Now substituting the value x = -2 , y =1 in `64y^6 - 729x^6`we get,
`= 64y^6 - 729x^6`
` = 64(1)^6 - 729(-2)^6`
` = 64 - 729(64)`
Taking 64 as common factor in above equation we get,
` = 64 (1-729)`
` = 64 xx -728`
` = -46592`
Hence the Product value of (4y2 − 9x2 )(16y4 + 36x2y2+81x4) is ` = -46592`.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Evaluate following using identities:
991 ☓ 1009
Write in the expanded form: (-2x + 3y + 2z)2
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
Evaluate of the following:
933 − 1073
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Evalute : `((2x)/7 - (7y)/4)^2`
Use the direct method to evaluate :
(3b−1) (3b+1)
Evaluate: (6 − 5xy) (6 + 5xy)
Evaluate: 203 × 197
Evaluate the following without multiplying:
(1005)2
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Expand the following:
`(4 - 1/(3x))^3`
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).