Advertisements
Advertisements
Question
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
Solution
In the given problem, we have to find the value of equation using identity
(i) Given (9y2 − 4x2) (81y4 +36x2y2 + 16x4)
We shall use the identity `(a- b) (a^2 + ab + b^2) = (a^3 - b^3)`
We can rearrange the (9y2 − 4x2) (81y4 +36x2y2 + 16x4)as
`(9y^2 - 4x^2) ((9y^2)^2) + 9y^2 xx 4x^2 + (4x^2)^2)`
`= (9y^2)^3 - (4x^2)^3`
` = (9y^2) xx (9y^2) xx (9y^2) + (4x^2) xx (4x^2) xx(4x^2) `
`= 729y^6 - 64x^6`
Now substituting the value x =,y = -1 in `729y^6 - 64x^6`we get,
`729y^6 - 64x^6`
`729(-1)^6 - 64(3)^6`
`729(1) - 64(729)`
`729 - 46656`
`=-45927`
Hence the Product value of (9y2 − 4x2) (81y4 +36x2y2 + 16x4)is `=-45927`.
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(3a – 7b – c)2
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Write in the expanded form: (ab + bc + ca)2
Evaluate of the following:
1043 + 963
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Evaluate: (5xy − 7) (7xy + 9)
Evaluate the following without multiplying:
(103)2
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
Using suitable identity, evaluate the following:
101 × 102