Advertisements
Advertisements
प्रश्न
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
उत्तर
In the given problem, we have to find the value of equation using identity
(i) Given (9y2 − 4x2) (81y4 +36x2y2 + 16x4)
We shall use the identity `(a- b) (a^2 + ab + b^2) = (a^3 - b^3)`
We can rearrange the (9y2 − 4x2) (81y4 +36x2y2 + 16x4)as
`(9y^2 - 4x^2) ((9y^2)^2) + 9y^2 xx 4x^2 + (4x^2)^2)`
`= (9y^2)^3 - (4x^2)^3`
` = (9y^2) xx (9y^2) xx (9y^2) + (4x^2) xx (4x^2) xx(4x^2) `
`= 729y^6 - 64x^6`
Now substituting the value x =,y = -1 in `729y^6 - 64x^6`we get,
`729y^6 - 64x^6`
`729(-1)^6 - 64(3)^6`
`729(1) - 64(729)`
`729 - 46656`
`=-45927`
Hence the Product value of (9y2 − 4x2) (81y4 +36x2y2 + 16x4)is `=-45927`.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Evaluate the following using identities:
(2x + y) (2x − y)
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
If a + b = 10 and ab = 21, find the value of a3 + b3
If a − b = 4 and ab = 21, find the value of a3 −b3
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Find the following product:
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
Use the direct method to evaluate :
(3b−1) (3b+1)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Expand the following:
(a + 4) (a + 7)
Expand the following:
(m + 8) (m - 7)
If m - n = 0.9 and mn = 0.36, find:
m + n
Simplify:
(x + y - z)2 + (x - y + z)2
Which one of the following is a polynomial?