Advertisements
Advertisements
प्रश्न
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
उत्तर
8a3 – b3 − 12a2b + 6ab2
= (2a)3 – b3 – 3(2a)(b)(2a – b)
= (2a – b)3 ...[Using a3 − b3 − 3ab(a − b) = (a − b)3]
= (2a – b)(2a – b)(2a – b)
APPEARS IN
संबंधित प्रश्न
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Evaluate the following using identities:
`(2x+ 1/x)^2`
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
Write in the expanded form:
`(a + 2b + c)^2`
Write in the expanded form:
`(2 + x - 2y)^2`
Evaluate of the following:
(9.9)3
Evaluate of the following:
`(10.4)^3`
Simplify of the following:
(x+3)3 + (x−3)3
Simplify of the following:
If x = −2 and y = 1, by using an identity find the value of the following
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Expand the following:
(3x + 4) (2x - 1)
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Evaluate the following without multiplying:
(999)2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
(2x + y)(4x2 - 2xy + y2)