Advertisements
Advertisements
प्रश्न
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
विकल्प
- 1
-1
- \[\frac{1}{2}\]
0
उत्तर
Given `a/b + b/a = 1`
`(a xx a)/(b xx a) +(b xx b) /(a xx b) = 1`
`a^2/(ab) +b^2/(ab) = 1`
`(a^2 +b^2 ) /(ab )= 1`
`a^2 +b^2 = 1 xx ab`
`a^2 +b^2= ab`
`a^2 +b^2 - ab = 0`
Using identity `a^3 +b^3 = (a+b)(a^2 - ab +b^2)`we get,
`a^3 +b^3 = (a+b)(a^2 - ab + b^2)`
`a^3 +b^3 = (a+b)(0)`
`a^3 +b^3 = 0`
Hence the value of `a^3 + b^3 ` is 0 .
APPEARS IN
संबंधित प्रश्न
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
Write in the expanded form: (-2x + 3y + 2z)2
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
Simplify (2x + p - c)2 - (2x - p + c)2
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
If a + b = 10 and ab = 21, find the value of a3 + b3
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Evaluate of the following:
`(10.4)^3`
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Find the following product:
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Expand the following:
(m + 8) (m - 7)
If m - n = 0.9 and mn = 0.36, find:
m + n
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.