Advertisements
Advertisements
प्रश्न
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
विकल्प
35
58
127
none of these
उत्तर
We have to find `a^2 + b^2 + c^2`
Given `a+b + c = 9,ab+bc +ca = 23`
Using identity `(a+b+c)^2 = a^2 + b^2 +c^2+2ab + 2bc + 2ca` we get,
`(9)^2 = a^2 +b^2 + c^2+ 2 (ab + bc + ca)`
` 9 xx 9 = a^2 + b^2 + c^2 +2 xx 23`
`81 = a^2 + b^2 + c^2+46`
By transposing +46 to left hand side we get,
`81 - 46 = a^2 +b^2 +c^2`
` 35 = a^2 +b^2 +c^2`
Hence the value of `a^2 +b^2 +c^2` is 35.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Write the following cube in expanded form:
(2a – 3b)3
Evaluate the following using suitable identity:
(102)3
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Simplify (2x + p - c)2 - (2x - p + c)2
Evaluate of the following:
(598)3
Find the following product:
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Find the square of : 3a + 7b
Evalute : `( 7/8x + 4/5y)^2`
Expand the following:
(m + 8) (m - 7)
Find the squares of the following:
(2a + 3b - 4c)
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).