Advertisements
Advertisements
प्रश्न
Simplify (2x + p - c)2 - (2x - p + c)2
उत्तर
We have
`(2x + p - c)^2 - (2x - p + c)^2`
`= [(2x)^2 + (p)^2 + (-c)^2 + 2(2x)(p) + 2(p)(-c) + 2(2x)(-c)] - [(2x)^2 + (-p)^2 + c^2 + 2(2x)(-p) + 2(2x)(c) + 2(-p)c]`
` =[4x^2 + p^2 + c^2 + 4xp - 2pc - 4cx] - [4x^2 + p^2 + c^2 - 4xp - 2pc + 4cx]`
`= 4x^2 + p^2 + c^2 + 4xp - 2pc - 4cx - 4x^2 - p^2 - c^2 + 4xp + 2pc - 4cx`
= 8xp - 8xc
= 8x(p - c)
`∴ (2x + p - c)^2 - (2x - p + c)^2 = 8x(p - c)`
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate :
(x+1) (x−1)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Evaluate: (4 − ab) (8 + ab)
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
Simplify:
(x + y - z)2 + (x - y + z)2
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.