हिंदी

Simplify (2x + P - C)2 - (2x - P + C)2 - Mathematics

Advertisements
Advertisements

प्रश्न

Simplify (2x + p - c)2 - (2x - p + c)2

उत्तर

We have

`(2x + p - c)^2 - (2x - p + c)^2`

`= [(2x)^2 + (p)^2 + (-c)^2 + 2(2x)(p) + 2(p)(-c) + 2(2x)(-c)] - [(2x)^2 + (-p)^2 + c^2 + 2(2x)(-p) + 2(2x)(c) + 2(-p)c]`

` =[4x^2 + p^2 + c^2 + 4xp - 2pc - 4cx] - [4x^2 + p^2 + c^2 - 4xp - 2pc + 4cx]`

`= 4x^2 + p^2 + c^2 + 4xp - 2pc - 4cx - 4x^2 - p^2 - c^2 + 4xp + 2pc - 4cx`

= 8xp - 8xc

= 8x(p - c)

`∴ (2x + p - c)^2 - (2x - p + c)^2 = 8x(p - c)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Algebraic Identities - Exercise 4.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 4 Algebraic Identities
Exercise 4.2 | Q 6.4 | पृष्ठ १२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Factorise the following using appropriate identity:

`x^2 - y^2/100`


Without actually calculating the cubes, find the value of the following:

(28)3 + (–15)3 + (–13)3


Give possible expression for the length and breadth of the following rectangle, in which their area is given:

Area : 35y2 + 13y  – 12

Evaluate the following using identities:

(1.5x− 0.3y2) (1.5x+ 0.3y2)


If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]


If x = 3 and y = − 1, find the values of the following using in identify:

\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]


If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].


If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]


If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is 


If a2 - 3a + 1 = 0, and a ≠ 0; find: 

  1. `a + 1/a`         
  2. `a^2 + 1/a^2`

Use the direct method to evaluate the following products :
 (b – 3) (b – 5)


Use the direct method to evaluate :
(x+1) (x−1)


Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`


Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`


Evaluate: (4 − ab) (8 + ab)


If `x + (1)/x = 3`; find `x^4 + (1)/x^4`


If `"r"  - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`


Simplify:
(x + y - z)2 + (x - y + z)2


If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×