हिंदी

If a2 - 3a + 1 = 0, and a ≠ 0; find: i. a+1a ii. a2+1a2 - Mathematics

Advertisements
Advertisements

प्रश्न

If a2 - 3a + 1 = 0, and a ≠ 0; find: 

  1. `a + 1/a`         
  2. `a^2 + 1/a^2`
योग

उत्तर

(i) Consider the given equation

a2 - 3a + 1 = 0

Rewrite the given equation, we have

a2 + 1 = 3a

⇒ `[ a^2 + 1 ]/a = 3`

⇒ `[ a^2/a + 1/a ] = 3`

⇒ `[ a + 1/a ] = 3`           ...(1)

(ii) We need to find `a^2 + 1/a^2`:

We know the identity, (a + b)2 = a2 + b2 + 2ab

∴ `(a + 1/a )^2 = a^2 + 1/a^2 + 2`           ...(2)

From equation (1), we have,

`a + 1/a` = 3

Thus, equation (2), becomes,

⇒ `(3)^2 = a^2 + 1/a^2 + 2`

⇒ 9 = `a^2 + 1/a^2 + 2`

⇒ `a^2 + 1/a^2 = 7`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Expansions (Including Substitution) - Exercise 4 (A) [पृष्ठ ५८]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 4 Expansions (Including Substitution)
Exercise 4 (A) | Q 12 | पृष्ठ ५८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×