Advertisements
Advertisements
प्रश्न
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
उत्तर
(i) Consider the given equation
a2 - 3a + 1 = 0
Rewrite the given equation, we have
a2 + 1 = 3a
⇒ `[ a^2 + 1 ]/a = 3`
⇒ `[ a^2/a + 1/a ] = 3`
⇒ `[ a + 1/a ] = 3` ...(1)
(ii) We need to find `a^2 + 1/a^2`:
We know the identity, (a + b)2 = a2 + b2 + 2ab
∴ `(a + 1/a )^2 = a^2 + 1/a^2 + 2` ...(2)
From equation (1), we have,
`a + 1/a` = 3
Thus, equation (2), becomes,
⇒ `(3)^2 = a^2 + 1/a^2 + 2`
⇒ 9 = `a^2 + 1/a^2 + 2`
⇒ `a^2 + 1/a^2 = 7`
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2a – 3b)3
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
If a1/3 + b1/3 + c1/3 = 0, then
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Expand the following:
(x - 5) (x - 4)
Expand the following:
(x - 3y - 2z)2
Find the squares of the following:
3p - 4q2
Using suitable identity, evaluate the following:
1033
Using suitable identity, evaluate the following:
9992