Advertisements
Advertisements
प्रश्न
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
उत्तर
(i) Consider the given equation
a2 - 3a + 1 = 0
Rewrite the given equation, we have
a2 + 1 = 3a
⇒ `[ a^2 + 1 ]/a = 3`
⇒ `[ a^2/a + 1/a ] = 3`
⇒ `[ a + 1/a ] = 3` ...(1)
(ii) We need to find `a^2 + 1/a^2`:
We know the identity, (a + b)2 = a2 + b2 + 2ab
∴ `(a + 1/a )^2 = a^2 + 1/a^2 + 2` ...(2)
From equation (1), we have,
`a + 1/a` = 3
Thus, equation (2), becomes,
⇒ `(3)^2 = a^2 + 1/a^2 + 2`
⇒ 9 = `a^2 + 1/a^2 + 2`
⇒ `a^2 + 1/a^2 = 7`
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Evaluate the following using suitable identity:
(99)3
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Write in the expanded form (a2 + b2 + c2 )2
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If a − b = −8 and ab = −12, then a3 − b3 =
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`