Advertisements
Advertisements
प्रश्न
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
उत्तर
(i) Consider the given equation
a2 - 5a - 1 = 0
Rewrite the given equation, we have
a2 - 1 = 5a
⇒ `[ a^2 - 1 ]/a = 5`
⇒ `[ a^2/a - 1/a ] = 5`
⇒ `a - 1/a = 5` ...(1)
(ii) We need to find `a + 1/a`:
We know the identity, (a - b)2 = a2 + b2 - 2ab
∴ `( a - 1/a )^2 = a^2 + 1/a^2 - 2`
⇒ `(5)^2 = a^2 + 1/a^2 - 2` [From(1)]
⇒ `25 = a^2 + 1/a^2 - 2`
⇒ `a^2 + 1/a^2 = 27` ...(2)
Now consider the identity (a + b)2 = a2 + b2 + 2ab
∴ `( a + 1/a )^2 = a^2 + 1/a^2 + 2`
⇒ `( a + 1/a )^2 = 27 + 2` [From (2)]
⇒ `( a + 1/a )^2 = 29`
⇒ `a + 1/a = +- sqrt29` ...(3)
(iii) We need to find `a^2 - 1/a^2`
We know the identity, a2 - b2 = (a + b)(a - b)
∴ `a^2 - 1/a^2 = ( a + 1/a )( a - 1/a )` ...(4)
From equation (3), we have,
` a + 1/a = +- sqrt29`
From equation (1), we have,
`a - 1/a = 5`;
Thus, identity (4), becomes,
`a^2 - 1/a^2 = (+- sqrt29)(5)`
⇒ `a^2 - 1/a^2 = 5(+- sqrt29 )`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Evaluate the following using identities:
(0.98)2
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If a1/3 + b1/3 + c1/3 = 0, then
Evaluate: (4 − ab) (8 + ab)
Expand the following:
(2p - 3q)2
Simplify:
(4x + 5y)2 + (4x - 5y)2
Expand the following:
(–x + 2y – 3z)2