Advertisements
Advertisements
प्रश्न
Evaluate the following using identities:
(0.98)2
उत्तर
We have
(0.98)2 = [1 - 0.02]2
= (1)2 + (0.02)2 - 2 x 1 x 0.02
= 1 + 0.0004 - 0.04 [∵ a = 1, b = 0.02]
= 1.0004 - 0.04
= 0.9604
∴ (0.98)2 = 0.9604
APPEARS IN
संबंधित प्रश्न
Evaluate the following using identities:
(399)2
Write in the expanded form: (-2x + 3y + 2z)2
If a − b = 4 and ab = 21, find the value of a3 −b3
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If a + b = 8 and ab = 6, find the value of a3 + b3
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
If a + b = 7 and ab = 10; find a - b.
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate: (5xy − 7) (7xy + 9)
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Simplify by using formula :
(a + b - c) (a - b + c)
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)