Advertisements
Advertisements
प्रश्न
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
उत्तर
In the given problem, we have to find the value of `x^2 - 1/x^3`
Given `x^4 + 1/x^4 = 119`
We shall use the identity `(x+y)^2 = x^2 + y^2 + 2xy`
Here putting, `x^4 + 1/x^4 = 119`
`(x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2`
`(x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2`
`(x^2 + 1/x^3 = x^4 + 1/x^2 + 2`
`(x^2 + 1/x^2)^2= 119 + 2`
`(x^2 + 1/x^2)^2 = 121`
`x^2 + 1/x^2^2 = sqrt(11 xx 11)`
`x^2 + 1/x^2^2 = ±11`
In order to find `(x-1/x)`we are using identity `(x-y)^2 = x^2 + y^2 - 2xy`.
\[\left( x - \frac{1}{x} \right)^2 = x^2 + \frac{1}{x^2} - 2 \times x \times \frac{1}{x}\]
`(x-1/x)^2 = x^2 + 1/x^2 - 2`
`(x-1/x)^2 =11 - 2`
`(x-1/x)^2 = 9`
`(x-1/x) =sqrt9`
`(x-1/x)=sqrt9`
`(x-1/x) =sqrt(3 xx 3)`
`(x-1/x)= ± 3 `
In order to find `x^3 - 1/x^3` we are using identity `a^3 - b^3 = (a-b)(a^2 + b^2 + ab)`
`x^3 - 1/x^3 = (x- 1/x)(x^2 + 1/x^2 + x xx 1/x)`
+ x xx )`Here `x^2 + 1/x^2 = 11` and `(x - 1/x) = 3`
`x^3 - 1/x^3 = (x-1/x)(x^2+ 1/x^2 + x xx 1/x)`
` = 3(11+1)`
` = 3 xx 12`
` = 36`
Hence the value of `x^3 - 1/x^3`is 36.
APPEARS IN
संबंधित प्रश्न
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Factorise the following:
27y3 + 125z3
Factorise:
27x3 + y3 + z3 – 9xyz
Write in the expanded form: `(x/y + y/z + z/x)^2`
Write in the expanded form: `(x + 2y + 4z)^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
Use the direct method to evaluate :
(2a+3) (2a−3)
Expand the following:
(x - 3y - 2z)2
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
Using suitable identity, evaluate the following:
101 × 102
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6