Advertisements
Advertisements
प्रश्न
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
उत्तर
In the given problem, we have to find the value of (3x + 2y) (9x2 − 6xy + 4y2)
Given (3x + 2y) (9x2 − 6xy + 4y2)
We shall use the identity `a^3 + b^3 = (a+b)(a^2 + b^2 - ab)`
We can rearrange the `(3x + 2y)(9x^3 - 6xy + 4y^2)`as
` = (3x + 2y)[(3x)^2 - (3x)(2y)+(2y)^2]`
` = (3x)^2 + (2y)^3`
` = (3x) xx (3x) xx (3x) + (2y) xx 2y xx (2y)`
` = 27x^3 + 8y^3`
Hence the Product value of `(3x+ 2y) (9x^2 - 6xy + 4y^2)`is `27x^3 + 8y^3`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Evaluate the following product without multiplying directly:
104 × 96
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Write in the expanded form: `(x/y + y/z + z/x)^2`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
If a + b = 8 and ab = 6, find the value of a3 + b3
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
Evalute : `((2x)/7 - (7y)/4)^2`
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Evaluate the following without multiplying:
(1005)2
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
Find the following product:
(x2 – 1)(x4 + x2 + 1)