Advertisements
Advertisements
प्रश्न
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
उत्तर
`(x - 1/x)(x^2 + 1 + 1/x^2)`
= `x(x^2 + 1 + 1/x^2) - (1)/x (x^2 + 1 + 1/x^2)`
= `x^3 + x + (1)/x - x - (1)/x - (1)/x^3`
= `x^3 - (1)/x^3`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 8) (x – 10)
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Use the direct method to evaluate :
(2+a) (2−a)
Evaluate: 20.8 × 19.2
Find the squares of the following:
(2a + 3b - 4c)
Simplify:
(2x + y)(4x2 - 2xy + y2)