Advertisements
Advertisements
प्रश्न
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
उत्तर
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
= x(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx) + 2y(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
= x3 + 4xy2 + 9xz2 - 2x2y - 6xyz - 3zx2 + 2x2y + 8y3 + 18yz2 - 4xy2 - 122z - 6xyz + 3x2z + 12y2z + 27z3 - 6xyz - 18yz2 - 9xz2
= x3 + 8y3 + 27z3 - 18xyz.
APPEARS IN
संबंधित प्रश्न
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Write in the expanded form: `(x + 2y + 4z)^2`
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`