Advertisements
Advertisements
Question
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Solution
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
= x(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx) + 2y(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
= x3 + 4xy2 + 9xz2 - 2x2y - 6xyz - 3zx2 + 2x2y + 8y3 + 18yz2 - 4xy2 - 122z - 6xyz + 3x2z + 12y2z + 27z3 - 6xyz - 18yz2 - 9xz2
= x3 + 8y3 + 27z3 - 18xyz.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Evaluate following using identities:
(a - 0.1) (a + 0.1)
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
Write in the expand form: `(2x - y + z)^2`
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Expand the following:
(3x + 4) (2x - 1)
Simplify (2x – 5y)3 – (2x + 5y)3.