Advertisements
Advertisements
Question
Write in the expand form: `(2x - y + z)^2`
Solution
`(2x - y + z)^2 = [(2x) + (-y) + z]^2`
`= (2x)^2 + (-y)^2 + (z)^2 + 2(2x)(-y) + 2(-y)(z) + 2(2x)(z)`
`= 4x^2 + y^2 + z^2 + 4x(-y) - 2yz + 4xz`
`∴ (2x - y + z)^2 = 4x^2 + y^2 + z^2 - 4xy - 2yz + 4xz`
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Write in the expanded form:
(2a - 3b - c)2
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
Evaluate:
483 − 303 − 183
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Evaluate the following without multiplying:
(95)2
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Factorise the following:
4x2 + 20x + 25