English

Write in the Expand Form: (2x - Y + Z)^2 - Mathematics

Advertisements
Advertisements

Question

Write in the expand form: `(2x - y + z)^2`

Solution

`(2x - y + z)^2 = [(2x) + (-y) + z]^2`

`= (2x)^2 + (-y)^2 + (z)^2 + 2(2x)(-y) + 2(-y)(z) + 2(2x)(z)`

`= 4x^2 + y^2 + z^2 + 4x(-y) - 2yz + 4xz`

`∴ (2x - y + z)^2 = 4x^2 + y^2 + z^2 - 4xy - 2yz + 4xz`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Algebraic Identities - Exercise 4.2 [Page 11]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 4 Algebraic Identities
Exercise 4.2 | Q 1.11 | Page 11

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Use suitable identity to find the following product:

(3 – 2x) (3 + 2x)


Factorise the following using appropriate identity:

9x2 + 6xy + y2 


Factorise:

`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`


Factorise the following:

64a3 – 27b3 – 144a2b + 108ab2 


If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.


Evaluate following using identities:

(a - 0.1) (a + 0.1)


Write in the expanded form:

(2a - 3b - c)2


Find the cube of the following binomials expression :

\[\frac{1}{x} + \frac{y}{3}\]


If x = 3 and y = − 1, find the values of the following using in identify:

\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]


If x = 3 and y = − 1, find the values of the following using in identify:

\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]


Evaluate:

483 − 303 − 183


Evaluate:
\[\left( \frac{1}{2} \right)^3 + \left( \frac{1}{3} \right)^3 - \left( \frac{5}{6} \right)^3\]

If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]


If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =


If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.


Evaluate the following without multiplying:
(95)2


If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"  + (1)/"a"`


If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`


Simplify:
(2x - 4y + 7)(2x + 4y + 7)


Factorise the following: 

4x2 + 20x + 25


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×