Advertisements
Advertisements
प्रश्न
Write in the expand form: `(2x - y + z)^2`
उत्तर
`(2x - y + z)^2 = [(2x) + (-y) + z]^2`
`= (2x)^2 + (-y)^2 + (z)^2 + 2(2x)(-y) + 2(-y)(z) + 2(2x)(z)`
`= 4x^2 + y^2 + z^2 + 4x(-y) - 2yz + 4xz`
`∴ (2x - y + z)^2 = 4x^2 + y^2 + z^2 - 4xy - 2yz + 4xz`
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[x-2/3y]^3`
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Write in the expanded form:
`(2 + x - 2y)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Simplify (2x + p - c)2 - (2x - p + c)2
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Find the following product:
If a + b = 8 and ab = 6, find the value of a3 + b3
(a − b)3 + (b − c)3 + (c − a)3 =
If a − b = −8 and ab = −12, then a3 − b3 =
If a2 + b2 + c2 − ab − bc − ca =0, then
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Find the square of `(3a)/(2b) - (2b)/(3a)`.
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Using suitable identity, evaluate the following:
9992
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.