Advertisements
Advertisements
प्रश्न
If a2 + b2 + c2 − ab − bc − ca =0, then
विकल्प
a + b + c
b + c = a
c + a = b
a = b = c
उत्तर
Given `a^2 +b^2 +c^2 - ab - bc - ca =0`
Multiplying both sides by 2 we get,
`2a^2 +2b^2 +2c^2 -ab - 2bc -2ca = 2 xx 0`
`(a^2 - 2ab +b^2 )+ (b^2 -2bc +c^2) + (c^2 -2ac +a^2)= 0`
`(a-b)^2 +(b-c)^2 + (c-a)^2 =0`
Therefore the sum of positive quantities is zero if and only if each quantity is zero.
`(a-b)=0 ,(b-c) = 0,(c-a) =0`
`a=b,b=c.c =a`
If `a^2 +b^2 +c^2 - ab -bc -ca =0`, then `a=b=c`.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Write in the expanded form:
`(2 + x - 2y)^2`
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
Use identities to evaluate : (101)2
Expand the following:
(a + 4) (a + 7)
Evaluate the following without multiplying:
(1005)2
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Using suitable identity, evaluate the following:
101 × 102
Expand the following:
(4a – b + 2c)2