Advertisements
Advertisements
प्रश्न
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
विकल्प
25
35
49
30
उत्तर
We have to find the value of `(9x^2 - 4/x^2)`
Given `3x +2/x = 7`
Using identity `(a+b)^2 = a^2 +b^2 +2ab` we get,
Here ` a = 3x ,b= 2/x`
`(3x +2/x )^2 = (3x)^2 + 2 xx 3x xx 2/x + (2/x)^2`
Substituting `3x + 2/x = 7` we get,
`(7)^2 = 9x^2 + 2 xx 3 xx x xx 2/x +(2/x)^2``
`49 = 9x^2 + 12 +4/x^2`
By transposing + 12 left hand side we get,
`49 - 12 = 9x^2 +4/x^2`
`37 = 9x^2 + 4/ x^2`
Again using identity `(a-b)^2 = a^2 - 2ab +b^2` we get,
`(3x - 2/x)^2 = (3x )^2 - 2 xx 3x xx 2/x + (2/x)^2`
`(3x- 2/x)^2=(9x)^2 + 4/x^2 - 12`
Substituting `(9x)^2 + 4/x^2 = 37` we get
`(3x - 2/x)^2 = 37 - 12`
`(3x - 2/x)^2 = 25`
`(3x - 2/x)(3x - 2/x) = 5 xx 5`
`3x - 2/x = 5`
Using identity (x + y)( x - y )we get
Here ` x= 3x,y = 2/x`
`(3x)^2 - (2/x)^2 = (3x + 2/x)(3x - 2/x)`
Substituting `3x +2/x = 7,3x - 2/x = 5` we get,
`9x^2 - 4/x^2 = 7 xx 5 `
`9x^2 - 4/x^2 = 35`
The value of `9x^2 - 4/x^2`is 35.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Write the following cube in expanded form:
(2x + 1)3
Factorise the following:
64m3 – 343n3
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Write in the expanded form:
`(a + 2b + c)^2`
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
Evaluate of the following:
1113 − 893
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
If a1/3 + b1/3 + c1/3 = 0, then
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate :
(xy+4) (xy−4)
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
Expand the following:
`(1/x + y/3)^3`