Advertisements
Advertisements
प्रश्न
Expand the following:
`(1/x + y/3)^3`
उत्तर
`(1/x + y/3)^3 = (1/x)^3 + (y/3)^3 + 3(1/x)(y/3)(1/x + y/3)` ...[Using identity, (a + b)3 = a3 + b3 + 3ab(a + b)]
= `1/x^3 + y^3/27 + y/x(1/x + y/3)`
= `1/x^3 + y^3/27 + y/x^2 + y^2/(3x)`
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Evaluate of the following:
(99)3
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Find the square of : 3a + 7b
Use identities to evaluate : (97)2
Use identities to evaluate : (998)2
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Use the direct method to evaluate :
(4+5x) (4−5x)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If x + y = 1 and xy = -12; find:
x2 - y2.
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.