Advertisements
Advertisements
प्रश्न
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
उत्तर
It is known that,
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
(–2x + 5y – 3z)2 = (–2x)2 + (5y)2 + (–3z)2 + 2(–2x)(5y) + 2(5y)(–3z) + 2(–3z)(–2x)
= 4x2 + 25y2 + 9z2 – 20xy – 30yz + 12xz
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
Find the following product:
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Find the squares of the following:
9m - 2n
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
The value of 2492 – 2482 is ______.
Expand the following:
(3a – 5b – c)2
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz